CMSC201
Computer Science I for Majors

Lecture 22 -
 Hexadecimal and Color Printing

Last Class We Covered

- ASCII values
- Short circuit evaluation
- Project 3
- Deep copying the 2D list for the path
- Debug statements

Any Questions from Last Time?

Today's Objectives

- To understand more about how data is represented inside the computer
- Hexadecimal numbers
- To show how to print in color
- To discuss details of Project 3
- Conceptualizing the 3D maze list
- Not printing out dead ends

Hexadecimal Numbers

Decimal Representation

- Decimal uses 10 digits
- Decimal, deci = 10
- The digits used are $0,1,2,3,4,5,6,7,8$, and 9

Binary Representation

- Binary uses 2 digits
- $\underline{B i n a r y}, b i=2$
- The digits used are 0 and 1

Hexadecimal Representation

- The digitiscosise draigec),
- Andtitititir x°

Hexadecimal Representation

- Hexadecimal (or just "hex") uses 16 digits

- The digits used are $0,1,2,3,4,5,6,7,8$, and 9
- And letters A (10), B (11), C (12), D (13), E (14), and F (15)

Hex to Binary Conversion

- A hexadecimal digit can be easily represented as four digits of binary (with leading zeros)

Hex	Binary	Hex	Binary	Hex	Binary	Hex	Binary
0	0000	4	0100	8	1000	C	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	A	1010	E	1110
3	0011	7	0111	B	1011	F	1111

- This makes conversion very simple -7AOF becomes 0111101000001111 - 1100001001101001 becomes C269

Hex to Decimal Conversion

- Possible to convert between decimal and hex
- But it requires calculating out multiples of 16
- Simpler to make a "side trip" binary as an in-between step when converting
- 240 becomes 11110000 becomes FO
- FO is equal to $\left(15^{*} 16^{1}\right)+\left(0 * 16^{0}\right)=240+0=240$
-7D becomes 01111101 becomes 125
- 7D is equal to $\left(7^{*} 16^{1}\right)+\left(13 * 16^{0}\right)=112+13=125$

Number System Notation

- Because number systems share a subset of the same digits, it may be confusing which is which
- For example, what is the value of 10 ?
- In decimal it's 10, in binary it's 2, and in hex it's 16
- To prevent this, numbers may often be prefixed with $0 \mathrm{~b}, \mathbf{0 d}$, or $\mathbf{0 x}$ (binary, decimal, hex):
- Ob1100 is binary, and has a value of 12
-0×15 is hexadecimal, and has a value of 21

Printing in Color

- To change the color of the background and text, we can use ANSI escape codes
- Works in many languages, not just Python
- To use the codes, simply use print ()
- Just like " $\backslash t$ " turns into a tab, these won't be "printed," but will change how the text looks
-For example, print("\033[1;34;33m") changes text to blue, and background to yellow

Syntax of ANSI Escape Color Codes

Color Values and Reset

- The colors available are black, red, green, yellow, blue, magenta, cyan, and white
- For text color, they are 30 - 37, in order
- For background, they are 40-47, in order
- This is a perfect use for a dictionary!
- Store the color name as the key, and the number as the value; no need to memorize the numbers
- To reset to default colors, use "\033 [0m"

Example Usages

```
CODE = "\033["
RESET = CODE + "Om"
START = CODE + "1;"
BLACKG = ";40m"
COLORS = {'black': '30', 'red': '31', 'green': '32', 'yellow': '33',
    'blue': '34', 'magenta': '35', 'cyan': '36', 'white': '37'}
>>> print(START + COLORS["cyan"] + BLACKG + \
                            "Dogs are great, even in cyan" + RESET)
Dogs are great, even in cyan
>>> print(START + COLORS["red"] + ";44m" + "Red on blue!" + RESET)
Red on blue!
>>> print("\033[1;30;42m")
```

>>> print("Until it's reset, it prints black on green from now on!")
Until it's reset, it prints black on green from now on!

Function to Print In Color

- Printing in color can be very useful when trying to distinguish different types of output
- Like debugging vs normal program output
- We've provided a function for you in the "Livecoding" section of the Documents page on the course website
- Feel free to use it in your Project 3 for debugging
- (Do not make your output hard to read, though!)

Project 3

- If you follow the suggestion in the project, the maze will be represented as a 3D list
- Try not to think of this as a "real" 3D list with a height, width, and depth
- The maze itself is not 3 -dimensional, after all
- Instead, think of it as height, width, and INFO
- That third dimension is just information

- Yes, this project has been given before
- Yes, in this class
- Yes, we have all of the old projects to compare it to
- Yes, this project has solutions on the internet
- Yes, we have copies of all of them
- Yes, we will go looking for new ones after it's due
- Yes, you could pay someone else to do it
- Yes, we know of the sites where you can get this done
- Yes, we will spot "elegant" code that you didn't write

Daily CS History

- Hemachandra
- Was a Jain scholar, poet, and polymath
- Lived from 1088 to 1173 in India
- Came up with the Fibonacci sequence 50 years before Fibonacci
- While coming up with different long and short syllable combinations for traditional poetry

आचार्य हैसचन्द्र्र

- https://youtu.be/_32rgS8CIKw?t=1m54s

Announcements

- Project 3 is due on Friday, December $8^{\text {th }}$ - Design due on Friday, December 1st
- Survey \#3 out on Friday, December $1^{\text {st }}$
- Final exam metacognition quiz out on BB same day
- Final exam is when?
- Friday, December 15th from 6 to 8 PM

Final Exam Locations

- Find your room ahead of time!
- ITE Building 102 - Sections 22, 28, 32
- ITE Building 104 - Sections 2, 3, 4, 5, 6
- Meyerhoff 030 - Sections 8, 9, 10, 11, 12, 14, 17, 18, 20
- Performing Arts 132 - Sections 15, 16, 31
- Sherman 003 - Sections 23, 26, 29, 30
- Public Policy 105 - Sections 21, 24, 27
- Hemachandra:
- https://commons.wikimedia.org/wiki/File:Hemachandra.gif

